
Chapter 1

Definitions and Basic
Properties

Contents

• Definitions and Basic Properties

• Sklar Theorem

• Copula and random variables

• Singularity

• Frechet-Hoeffding Bounds

• Survival copula

• Symmetry

• Random variate generation

• Multivariate Copulas

1



2

It is well known and easily verified that F1(X) and F2(Y ), where F1 and
F2 are the marginals distributions of X and Y respectively, are two uniform
variables if F1 and F2 are continuous. Hence if the marginals F1 and F2 of the
bivariate distribution F are continuous, there exists a unique copula, which is a
cumulative distribution function, with its marginals being uniform. Formally, a
function C : [0, 1]2 → [0, 1] such that

F (x, y) = C(F1(x), F2(y)) (1.1)

is a copula. On other hand, if C(u1, u2) and continuous functions F1 and F2 are
given, then there exists a bivariate distribution function F such that

C(u1, u2) = F (F−1
1 (u1), F

−1
2 (u2)), (1.2)

where, Fi(t), i = 1, 2 is continuous and non decreasing, but could be constant on
some intervals. In that case, one defines a quasi-inverse by

F−1
i (t) = inf{x : Fi(x) ≥ t}. (1.3)

Lemma 1.0.1. Let H be a joint distribution function with marginal F and G.
Then for all (xi, yi) ∈ R2, i = 1, 2:

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|.

Proof. See Chapter 2 Nelsen (2006).

Using copulas allows us to separate the study of dependence from the study
of the marginals, since one is then reduced to study of the relation between two
uniform variables. The purpose of this section is to present the results on copulas
scattered in diverse literature with the emphasis on dependence concepts and
properties.

Definition 1.0.2. A bivariate copulas is a function C : [0, 1]2 → [0, 1] subject to

i) C(x, 0) = C(0, y) = 0, for all x, y ∈ [0, 1].
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ii) C(x, 1) = x, C(1, y) = y, for all x, y ∈ [0, 1].

iii) C is joint-increasing (i.e. for every 2-box J = [x1, x2] × [y1, y2] ∈ [0, 1]2,
the associated C-volume VC(J) satisfies VC(J) = C(x2, y2) + C(x1, y1) −

C(x1, y2)− C(x2, y1) ≥ 0).

1.0.1 Some properties

In this section, we discuss some elementary properties of copula function.

Theorem 1.0.3. Let C be a copula. Then for every (u, v) ∈ I2,

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}, ∀u, v ∈ I.

Proof. By properties of copula C(u, v) we can write ∀u, v ∈ I2

0 ≤ C(u, v) ≤ C(u, 1) = u, 0 ≤ C(u, v) ≤ C(1, v) = v

so, 0 ≤ C(u, v) ≤ min{u, v}. Also, 0 ≤ VC ([u, 1]× [v, 1]) = 1− u− v.

These imply that:

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}, ∀u, v ∈ I.

Inequality max{u + v − 1, 0} ≤ C(u, v) ≤ min{u, v} is the copula version
of the Fréchet-Hoeffding bounds inequality, which we shall encounter later in
terms of distribution functions. In the litretures refer to M(u, v) = min{u, v}

as the Fréchet-Hoeffding upper bound and W (u, v) = max{u + v − 1, 0} as the
Fréchet-Hoeffding lower bound. A third important copula that we will frequently
encounter is the product copula Π(u, v) = uv.
The following theorem, which follows directly from Lemma 1, establishes the
continuity of copulas via a Lipschitz condition on I2.

Theorem 1.0.4. Let C be a copula. Then for all (ui, vi) ∈ I2, i = 1, 2

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|.

Hence C is uniformly continuous on its domain
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The sections of a copula will be employed in the construction of copulas in the
next chapter, and will be used in Chapter 5 to provide interpretations of certain
dependence properties:

Definition 1.0.5. Let C(u, v) be a copula, and let a be any number in I. The
horizontal section of C at a is the function from I to I given by h(t) = C(t, a);
the vertical section of C at a is the function from I to I given by v(t) = C(a, t);
and the diagonal section of C is the function δC from I to I defined by δC(t) =

C(t, t). The following corollary is an immediate consequence of Lemma 1 and
Differentiability copula.

Corollary 1.0.6. The horizontal, vertical, and diagonal sections of a copula C
are all nondecreasing and uniformly continuous on I.

We conclude this section with the two theorems concerning the partial deriva-
tives of copulas. The word “almost” is used in the sense ofLebesgue measure.

Theorem 1.0.7. Let C be a copula. Then

• i) For any v ∈ I, the partial derivative ∂C(u,v)
∂u exists for almost all u, and

for such v and u,
0 ≤ ∂C(u, v)

∂u
≤ 1,

• ii) Similarly, for any u ∈ I, the partial derivative ∂C(u,v)
∂v exists for almost

all v, and for such u and v,

0 ≤ ∂C(u, v)

∂v
≤ 1,

• iii) Furthermore, the functions p(v) = ∂C(u,v)
∂u and p(u) = ∂C(u,v)

∂v are defined
and nondecreasing almost everywhere on I. Let C be a copula.

• iv) If ∂C(u,v)
∂v and ∂2C(u,v)

∂u∂v are continous on I2 and ∂C(u,v)
∂u exists for all

u ∈ (0, 1) when v = 0, then ∂C(u,v)
∂u and ∂2C(u,v)

∂u∂v exist in I2 and

∂2C(u, v)

∂u∂v
=

∂2C(u, v)

∂v∂u
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Proof. Nelsen(2006), Section 2.2, Theorems 2.2.7 and 2.2.8.

Corollary 1.0.8. Under the assumtions of the Theorem, the density function of
copula C(u, v) given by: c(u, v) = ∂2C(u,v)

∂u∂v

1.0.2 Sklar Theorem

he theorem in the title of this section is central to the theory of copulas and is the
foundation of many, if not most, of the applications of that theory to statistics.
Sklar’s theorem elucidates the role that copulas play in the relationship between
multivariate distribution functions and their univariate margins. Thus we begin
this section with a short discussion of distribution functions.

Theorem 1.0.9. (Sklar, 1959) Let F be a joint distribution function with marginal
F1 and F2. Then, there exists a copula C subject to

F (x, y) = C(F1(x), F2(y));∀x, y ∈ R (1.4)

i) If F1 and F2 are continuous, then C is unique. Otherwise, C is uniquely
determined on Ran F1× Ran F2.
ii) Conversely, if C is a copula and F1 and F2 are distribution functions, then the
function F (x, y) = C(F1(x), F2(y)) is a joint distribution with marginal F1 and
F2.

Proof. By appliying lemma 1 and since the joint distribution F (x, y) is 2-increasing,
having to margins F1 anf F2 and increasing in arguments the proof completes.

Corollary 1.0.10. If F (x, y) is a continuous bivariate distribution function
with marginal F1 and F2 and quantile functions F−1

1 and F−1
2 then for all

u, v ∈ [0, 1], C(u, v) = F (F−1
1 (u), F−1

2 (v)) is the unique choice. Where F−1(u) =

sup{x : F (x) ≤ u} = inf{x : F (x) ≥ u}.

Example 1.0.11. We consider the following two cases.
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i) FGM family: Let (X,Y ) be a random vector with distribution function

F (x, y) = F1(x)F2(y)[1 + θF̄1(x)F̄2(y)]

then, C(u, v) = uv[1 + θ(1− u)(1− v)].

ii) Gumbel family: Let (X,Y ) be a random vector with distribution function

F̄ (x, y) = exp{−(x+ y + θxy)}, x ≥ 0, y ≥ 0, 0 ≤ θ ≤ 1.

Then, we can show that

C(u, v) = 1− u− v + (1− u)(1− v) exp {−θ ln(1− u) ln(1− v)}.

iii) Gaussian Copula: Let

f(x, y) =
1

2π
√
1− ρ2σ1σ2

exp

[
− 1

2(1− ρ2)

[
(x− µ1)

2

σ2
1

+
(y − µ2)

2

σ2
2

− 2ρ
(x− µ1)(y − µ2)

σ1σ2

]]
,

then
Cρ(u, v) = Nρ

(
Φ−1
1 (u),Φ−1

2 (v)
)
,

where Nρ(t, s) is standard bivariate Normal distribution function.

1.1 Copula and random variables

In this section, we will use the term “random variable” in the statistical rather
than the probabilistic sense; that is, a random variable is a quantity whose values
are described by a (known or unknown) probability distribution function. Of
course, all of the results to follow remain valid when a random variable is defined
in terms of measure theory, i.e., as a measurable function on a given probability
space.

Theorem 1.1.1. Let X and Y be random variables with distribution functions
F and G, respectively, and joint distribution function H. Then there exists a
copula C such that H(x, y) = C(F (x), G(y)); ∀x, y ∈ R holds.
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i) If F and G are continuous, C is unique. Otherwise, C is uniquely de-
termined on Ran F × Ran G. The copula C in this Theorem will be called the
copula of X and Y , and denoted by CX,Y when its identification with the random
variables X and Y is advantageous.
ii) Conversely, if C is a copula and F and G are distribution functions, then the
function H(x, y) = C(F (x), G(y)) is a joint distribution function with marginal
F and G.

Proof. If F anf G are continous then U = F (X) and V = G(Y ) are standard
uniform random variables, now if the random vector (U, V ) having to joint dis-
tribution C(u, v) then

H(x, y) = P [X ≤ x, Y ≤ y] = P [F (X) ≤ F (x), G(Y ) ≤ G(y)] = C(F (x), G(y)),

where C(u, v) is unique.

The following theorem shows that the product copula
∏
(u, v) = uv charac-

terizes independent random variables when the distribution functions are contin-
uous.

Theorem 1.1.2. Let X and Y be continuous random variables. Then X and Y

are independent if and only if CX,Y (u, v) =
∏
(u, v).

Proof. The proof follows from above and the observation that X and Y are
independent if and only if H(x, y) = F (x)G(y), forallx, y ∈ R2.

Corollary 1.1.3. Under the assumptions of Theorem 1.17, we obtain

i) f(x, y) = f1(x)f2(y)c(F1(x), F2(y)).

ii) c(u, v) = ∂2C(u,v)
∂u∂v .

Much of the usefulness of copulas in the study of nonparametric statistics
derives from the fact that for strictly monotone transformations of the random
variables, copulas are either invariant or change in predictable ways. Recall that
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if the distribution function of a random variable X is continuous, and if α(x) is a
strictly monotone function whose domain contains RanX, then the distribution
function of the random variable α(X) is also continuous. We treat the case of
strictly increasing transformations first.

Theorem 1.1.4. (Nelsen, 2006) Let X and Y be two continuous random variables
with copula function CXY . If α(.) and β(.) are strictly increasing on RanX and
RanY respectively, Cα(X),β(Y ) = CX,Y . Thus, CX,Y is invariant under strictly
increasing transformation of X and Y .

Proof. Let α(X) ∼ G1 and β(Y ) ∼ G2. Then G1(x) = F1(α
−1(x)) and G2(y) =

F2(β
−1(y)). Since α(.) and β(.) are strictly increasing, we have

Cα(X),β(Y )(G1(x), G2(y)) = P [α(X) ≤ x, β(Y ) ≤ y]

= P [X ≤ α−1(x), Y ≤ β−1(y)]

= F (α−1(x), β−1(y))

= CX,Y [F1(α
−1(x)), F2(β

−1(y))]

= CX,Y (G1(x), G2(y)). (1.5)

Then,

Cα(X),β(Y )(u, v) = CX,Y (u, v), ∀(u, v) ∈ I2. (1.6)

Since X and Y are continuous, hence RanG1 =RanG2 = I = [0, 1].

Theorem 1.1.5. (Nelsen, 2006) Let X and Y be two continuous random variables
with copula function CX,Y . Let α(.) and β(.) be strictly monotone on Ran(X)

and Ran(Y ). Then

i) If α(.) is strictly increasing and β(.) is strictly decreasing,

Cα(X),β(Y )(u, v) = u− CX,Y (u, 1− v).

ii) If α(.) is strictly decreasing and β(.) is strictly increasing,

Cα(X),β(Y )(u, v) = v − CX,Y (1− u, v).
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iii) If α(.) and β(.) are both strictly decreasing,

Cα(X),β(Y )(u, v) = u+ v − 1 + CX,Y (1− u, 1− v).

1.1.1 A simple proof of Sklar’s theorem

Ludger R¨uschendorf (2009)
Let X be a real random varable with distribution F (x) and V ∼ U(0, 1) be
uniformly distributed on (0, 1) and dependent of X. The modified distribution
F (x, λ) (0 < λ < 1)is dfined as :

F (x, λ) = P [X < x] + λP [X = x],

where P [X = x] = P [X ≤ x]−P [X < x]. We define the generalized distributional
transform of X by U := F (X,V ). An equivalent representation of the distribution
transform is.:

U = F (X−) + V.(F (X)− F (X−)) = V.F (X) + (1− V )F (X−). (3)

• If F (x) is continuous then F (x, λ) = F (x), and it is well known that
U = F (X) ∼ U(0, 1).

• This property holds true for the distributional transform in general and the
quantile transform is exactly the inverse of the distributional transform.
Where

F−1(u) = inf{x ∈ R : F (x) ≥ u}, u ∈ (0, 1).

For the sake of completeness we give a proof of this simple but interesting result.

Lemma 1.1.6. (Distributional transform). Let U be the distributional transform
of X as defined in (3). Then

U = F (X,λ) ∼ U(0, 1), and X = F−1(U), a.e.

Proof. For 0 < α < 1 let q−α (X) denote the lower α-quantile, that is
q−α (X) = sup{: P [X ≤ x]) < α}. Then

F (X,V ) ≤ α ⇔ (X,V ) ∈ {(x, λ) : P [X < x] + λP [X = x] ≤ α}.
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If β := P [X = q−α (X)] > 0 and with q := P [X < q−α (X)] this is equivalent to

{X < q−α (X)} ∪ {X = q−α (X)}, q + V β ≤ α.}

Thus we obtain

P [U ≤ α] = P [F (X,λ) ≤ α] = q + βP

(
V ≤ α− q

β

)
(1.7)

= q + β
α− q

β
= α. (1.8)

If β = 0, then

P [F (X,λ) ≤ α] = P [X < q−α (X)] = P [X ≤ q−α (X)] = α.

By definition of U , we have F (X−) ≤ U ≤ F (X). Since for any u ∈ (F (x−), F (x))

it hold that x = F−1(u). Thus we obtain that X = F−1(U), a.e.

The distributional transform has a lot of interesting consequences. It implies
that in many respects the case of discrete or mixed type distributions does not
need some extra consideration compared to the case of continuous distributions.
In particular it implies a simple proof of Sklar’s Theorem.

Theorem 1.1.7. (Sklar’s Theorem). Let F ∈ F (F1, ..., Fn) be an n-dimensional
distribution function with marginals F1, ..., Fn.Then there exists a copula C (i.e.
an n-dimensional distribution function on In with uniform marginals) such that

F (x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)), ∀xi ∈ R, i = 1, 2, ..., n

Proof. Let X = (X1, ..., Xn) be a random vector on a probability space (Ω,F ,P)

with distribution function F and let V be independent of X and uniformly
distributed on (0, 1), V ∼ U(0, 1). Considering the distributional transforms
Ui := Fi(Xi, V ), 1 ≤ i ≤ n, we have by above Lemma Ui ∼ U(0, 1), and
Xi = F−1

i (Ui)a.s., 1 ≤ i ≤ n. Thus defining C to be the distribution function
of U = (U1, ..., Un) we obtain

F (x) = P (X ≤ x) = P

(
n∩

i=1

(F−1
i (Ui) ≤ xi)

)
(1.9)

= P

(
n∩

i=1

(Ui ≤ Fi(xi))

)
= C(F1(x1), ..., Fn(xn)). (1.10)
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Where C(u1, u2, ..., un) is a copula of F (x1, x2, ..., xn).

1.2 Singularity

Let X and Y be random variables with distribution functions F and G, respec-
tively, and joint distribution function H with corresponding copula C(., .). Then
in view of probability measure we have VH ((−∞, x]× (−∞, y]) = H(x, y), and
CH ((0, u]× (0, v]) = C(u, v).

In this case for any copula C(., .), let C(u, v) = AC(u, v) + SC(u, v), where

AC(u, v) =

∫ u

0

∫ v

0
c(t, s)dtds and SC(u, v) = C(u, v)−AC(u, v).

Where c(u, v) =
∂2C(u, v)

∂u∂v
.

Remark 1.2.1. 1-If C(u, v) = AC(u, v) for all u, v ∈ I = [0, 1]. Then c(u, v) =
∂2C(u, v)

∂u∂v
and C(u, v) is called absolutly continious copula.For example the cop-

ulas
∏
(u, v), FGM(θ), Gumble(θ) and Gaussian(ρ) are absolutly continious

copula.
2-If ∂

2C(u, v)

∂u∂v
= 0 then C(u, v) = S(u, v). in this case the copula C(u, v) is called

singular copula.
3-Otherwisw the copula C(u, v) has a absolut continious component as AC(u, v)

and a singular component SC(u, v). In this case neither AC nor SC is not copula.

Example 1.2.2. i) The following copulas are singular: M(u, v) = min{u, v},

because: ∂2M(u, v)

∂u∂v
= 0, for all u ̸= v, so

P [U ̸= V ] =

∫ ∫
u̸=v

∂2M(u, v)

∂u∂v
dudv = 0

consequently: P [U = V ] = 1.

ii) If W (u, v) = max{u + v − 1, 0}, then similarly part (i) we can show that:
P [U + V = 1] = 1− P [U + V ̸= 1] = 1.

iii) Let C(u, v) =
√

uv.M(u, v) then C(u, v) = AC(u, v) + SC(u, v). This model



12

has a singular part on the diagonal u = v.
Where

∂2C(u, v)

∂u∂v
=

1

2
√
v
I[u<v] +

1

2
√
u
I[v<u] + h(u)I[v=u]

and

h(u) = lim
v→u+

∂C(u, v)

∂u
− lim

v→u−

∂C(u, v)

∂u
.

As excersize comput AC(u, v) and SC(u, v).

1.3 Frechet-Hoeffding Bounds

The Fréchet-Hoeffding bounds are as universal bounds for copulas, i.e., for any
copula C(u, v) and for all u, v ∈ I,

W (u, v) = max{u+ v − 1, 0} ≤ C(u, v) ≤ M(u, v) = min{u, v}.

As a consequence of Sklar’s theorem, if X and Y are random variables with a
joint distribution function H(x, y) and margins F (x) and G(y) respectively, then
for all x, y ∈ R,

Hl(x, y) = max{F (x) + F (y)− 1, 0} ≤ H(x, y) ≤ min{F (x), G(y)} = Hu(x, y).

Because M(u, v) and W (u, v) are copulas, the above bounds are joint distribu-
tion functions and are called the Fréchet-Hoeffding bounds for joint distribution
functions H with margins F and G. Of interest in this section is the following
question: What can we say about the random variables X and Y when their joint
distribution function H is equal to one of its Fréchet-Hoeffding bounds?

Theorem 1.3.1. Let X and Y be random variables with joint distribution func-
tion H(x, y). Then H(x, y) is equal to its Fréchet-Hoeffding upper bound if and
only if for every (x, y) ∈ R2, either

P [X > x, Y ≤ y] = 0, or P [X ≤ x, Y > y] = 0.
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Proof. Let F (x) and G(y) are mirgins of H(x, y), then as application law of total
probability, it is easy to write

F (x) = P [X ≤ x] = H(x, y) + P [X ≤ x, Y > y]

and
G(y) = P [Y ≤ y] = H(x, y) + P [X > x, Y ≤ y].

These imply that

H(x, y) = min{F (x), G(y)} ⇔ P [X > x, Y ≤ y] = 0 or P [X ≤ x, Y > y] = 0.

Corollary 1.3.2. Let X and Y be random variables with joint distribution func-
tion H. Then H is identically equal to its Fréchet-Hoeffding upper bound if and
only if the support of H is a non-decreasing subset of R2.

Theorem 1.3.3. Let X and Y be random variables with joint distribution func-
tion H(x, y). Then H(x, y) is equal to its Fréchet-Hoeffding lower bound if and
only if for every (x, y) ∈ R2, either

P [X ≤ x, Y ≤ y] = 0 or P [X > x, Y > y] = 0.

Corollary 1.3.4. Let X and Y be random variables with joint distribution func-
tion H. Then H is identically equal to its Fréchet-Hoeffding upper bound if and
only if the support of H is a non-increasing subset of R2.

When X and Y are continuous, the support of H(x, y) can have no horizontal
or vertical line segments, and in this case it is common to say that “Y is almost
surely an increasing function of X” if and only if the copula of X and Y is
M(u, v); and “Y is almost surely a decreasing function of X” if and only if the
copula of X and Y is W (u, v). If U and V are uniform (0, 1) random variables
whose joint distribution function is the copula M(u, v), then P [U = V ] = 1; and
if the copula is W (u, v), then P [U + V = 1] = 1. Random variables with copula
M(u, v) are often called comonotonic, and random variables with copula W (u, v)

are often called countermonotonic.
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1.4 Survival copula

For a pair (X,Y ) of random variables with joint distribution function H(x, y),
the joint survival function is given by H̄(x, y) = P [X > x, Y > y]. The margins
of H̄(x, y) are the functions F̄ (x) = 1 − F (x) and Ḡ(y) = 1 − G(y), which
are the univariate survival functions F (x) and G(y) , respectively. A natural
question is the following: Is there a relationship between univariate and joint
survival functions analogous to the one between univariate and joint distribution
functions, as embodied in Sklar’s theorem? To answer this question, suppose that
the copula of X and Y is C(u, v). Then we have

H̄(x, y) = 1− F (x)−G(y) +H(x, y) (1.11)

= F̄ (x) + Ḡ(y)− 1 + C(1− F̄ (x), 1− Ḡ(y)), (1.12)

so that if we define a function if Ĉ(u, v) from I2 to I by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v),

we have
H̄(x, y) = Ĉ(u, v).

First note that, the function Ĉ(u, v) is a copula. We refer to Ĉ(u, v) as the
survival copula of X and Y . Secondly, notice that Ĉ(u, v) “couples” the joint
survival function to its univariate margins in a manner completely analogous to
the way in which a copula connects the joint distribution function to its margins.
Care should be taken not to confuse the survival copula Ĉ(u, v) with the joint sur-
vival function C̄ for two uniform (0, 1) random variables whose joint distribution
function is the copula C. Note that

C̄(u, v) = P [U > u, V > v] = 1− u− v + C(u, v) = Ĉ(1− u, 1− v).

Let U and V be two uniform random variables on (0, 1) with joint distribution
function C(u, v), then the survival function of C is as follows:

C̄(u, v) = P (U > u, V > v) = 1− P (U ≤ u)− P (V ≤ v) + P (U ≤ u, V ≤ v)

= 1− u− v + C(u, v). (1.13)
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So, we have

C̄(u, 1) = C̄(1, v) = 0, C̄(u, 0) = 1− u, C̄(0, v) = 1− v.

Let X and Y be random variables with joint distribution F (x, y) and margins
F1(x), F2(y) and corresponding copula C(u, v), then for all x, y ∈ R, we can show
that:

• P (X ≤ x, Y ≤ y) = C(P (X ≤ x), P (Y ≤ y)) = C(F1(x), F2(y)),

•

P (X ≤ x, Y > y) = P (X ≤ x)− C(P (X ≤ x), 1− P (Y > y))

= F1(x)− C(F1(x), 1− F̄2(y)),

•

P (X > x, Y ≤ y) = P (Y ≤ y)− C(1− P (X > x), P (Y ≤ y))

= F2(y)− C(1− F̄1(x), F2(y)),

•

P (X > x, Y > y) = Ĉ(P (X > x), P (Y > y)) = Ĉ(F̄1(x), F̄2(y))

= F̄1(x) + F̄2(y)− 1 + C(1− F̄1(x), 1− F̄2(y)).

So if we define Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), we have

F̄ (x, y) = Ĉ(F̄1(x), F̄2(y)).

Then,

Ĉ(u, v) = F̄ (F̄1
−1

(u), F̄2
−1

(v)).

Therefore, Ĉ(u, v) is a copula and we refer to Ĉ as the survival copula of X and
Y .
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Remark 1.4.1. If

C̄(u, v) = 1− u− v + C(u, v) = Ĉ(1− u, 1− v)

then
C(u, v) = u+ v − 1 + Ĉ(1− u, 1− v).

Example 1.4.2. Let (X,Y ) be a random vector with the following survival
function

F̄ (x, y) = [1 + x+ y + θxy]−a; 0 ≤ θ ≤ a+ 1, a > 0, x, y ≥ 0.

Assume that u = F̄1(x) = (1 + x)−a and v = F̄2(y) = (1 + y)−a. Then, we have

1 + x = u−1/a, 1 + y = v−1/a.

So,
x = u−1/a − 1, y = v−1/a − 1.

Therefore,

Ĉ(u, v) = F̄ (u−1/a − 1, v−1/a − 1)

= [1 + u−1/a − 1 + v−1/a − 1 + θ(1− u−1/a)(1− v−1/a)]−a

= [u−1/a + v−1/a − 1 + θ(1− u−1/a)(1− v−1/a)]−a; 0 < u < 1, 0 < v < 1.

Then,

C(u, v) = u+v−1+{(1−u)−1/a+(1−v)−1/a−1+θ[1−(1−u)−1/a][1−(1−v)−1/a]}−a.

1.5 Symmetry

If X is a random variable and a is a real number, we say that X is symmetric
about a if the distribution functions of the random variables X − a and a − X

are the same, that is, if for any x ∈ R,

P [X − a ≤ x] = P [a−X ≤ x].
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When X is continuous with distribution function F, this is equivalent to

F (a+ x) = F̄ (a− x).

Now consider the bivariate situation. What does it mean to say that a pair
(X,Y ) of random variables is “symmetric” about a point (a, b)? There are a
number of ways to answer this question, and each answer leads to a different
type of bivariate symmetry.

Definition 1.5.1. Let X and Y be random variables and let (a, b) be a point in
R2.

1. The random vector (X,Y ) is marginally symmetric about (a, b) if X and Y

are symmetric about a and b, respectively.
2.The random variable (X,Y ) is radially symmetric about (a, b) if the joint dis-
tribution function of X−a and Y −b is the same as the joint distribution function
of a−X and b− Y .
3. The random vector (X,Y ) is jointly symmetric about (a, b) if the following
four pairs of random variables have a common joint distribution: (X − a, Y − b),
(X − a, b− Y ), (a−X,Y − b), and (a−X, b− Y ).

When X and Y are continuous, we can express the condition for radial sym-
metry in terms of the joint distribution and survival functions of X and Y in a
manner analogous to symmetry in univariate case between univariate distribution
and survival functions:

Theorem 1.5.2. Let X and Y be continuous random variables with joint dis-
tribution function H and margins F and G, respectively. Let (a, b) be a point in
R2. Then (X,Y ) is radially symmetric about(a, b) if and only if

H(a+ x, b+ y) = H̄(a− x, b− y), ∀(x, y) ∈ R2.

The term “radial” comes from the fact that the points (a + x, b + y) and
(a − x, b − y) that appear in above formula lie on rays emanating in opposite
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directions from (a, b). Graphically, this Theorem states that regions such as
those shaded in bellow Fig. (a) always have equal H-volume .

Example 1.5.3. The bivariate normal distribution with parameters
µX , µY , σ

2
x, σ

2
Y , ρ is radially symmetric about the point (µX , µY ). The proof is

straightforward.

Because the condition for radial symmetry in (above therem involves both
the joint distribution and survival functions, it is natural to ask if copulas and
survival copulas play a role in radial symmetry. The answer is provided by the
next theorem.

Theorem 1.5.4. Let X and Y be continuous random variables with joint dis-
tribution function H, marginal distribution functions F and G, respectively, and
copula C. Further suppose that X and Y are symmetric about a and b, respec-
tively. Then (X,Y ) is radially symmetric about (a, b), (i.e., H satisfies in above
teorem), if and only if C = Ĉ , i.e., if and only if C satisfies the functional
equation

C(u, v) = u+ v − 1 + C(1− u, 1− v),∀(u, v) ∈ I2. (A)

Proof. By applying above theorem and definition of it is easy to show that.

H(a+ x, b+ y) = H̄(a− x, b− y) ⇔ C(F (x+ a), G(y + b))

= Ĉ(F̄ (a− x), Ḡ(b− y)) ⇔ C(F (x+ a), G(y + b))

= Ĉ(F̄ (a− x), Ḡ(b− y)) ⇔ C(u, v) = Ĉ(u, v).

userme
Placed Image
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Geometrically, formula (A) states that for any (u, v) ∈ I2, the rectangles
[0, u]× [0, v]and [1−u, 1]× [1−v, 1] have equal C-volume, as illustrated in Fig.(b).

Definition 1.5.5. Another form of symmetry is exchangeability—random vari-
ables X and Y are exchangeable if the vectors (X,Y ) and (Y,X) are identically
distributed. Hence if the joint distribution function of X and Y is H, then
H(x, y) = H(y, x) for all x, y ∈ R2. Clearly exchangeable random variables must
be identically distributed, i.e., have a common univariate distribution function.
For identically distributed random variables, exchangeability is equivalent to the
symmetry of their copula as expressed in the following theorem, whose proof is
straightforward.

Theorem 1.5.6. Let X and Y be continuous random variables with joint dis-
tribution function H, margins F and G, respectively, and copula C. Then X

and Y are exchangeable if and only if F = G and C(u, v) = C(v, u) for all
(u, v) ∈ I2. When C(u, v) = C(v, u) for all (u, v) ∈ I2, we will say simply that C
is symmetric.

Example 1.5.7. Although identically distributed independent random variables
must be exchangeable (because the copula

∏
(u, v) is symmetric), the converse is

of course not true—identically distributed exchangeable random variables need
not be independent. To show this, simply choose for the copula of X and Y

any symmetric copula except
∏
(u, v), such as one from Example FGM(θ) or

AMH(θ).

userme
Placed Image
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1.5.1 Order

In other words, the Fréchet-Hoeffding lower bound copula W is smaller than
every copula, and the Fréchet-Hoeffding upper bound copula M is larger than
every copula, i.e. W (u, v) ≤ C(u, v) ≤ M(u, v) This point-wise partial ordering
of the set of copulas is called the concordance ordering and will be important
in Chapter 5 when we discuss the relationship between copulas and dependence
properties for random variables (at which time the reason for the name of the
ordering will become apparent).

Definition 1.5.8. If C1 and C2 are copulas, we say that C1 is smaller than C2

(or C2 is larger than C1), and write C1 ≺ C2 (or C2 ≺ C1 ) if

C1(u, v) ≤ C2(u, v), for all u, v ∈ I.

It is a partial order rather than a total order because not every pair of copulas
is comparable.

Example 1.5.9. 1) The product copula
∏
(u, v) and the copula obtained by av-

eraging the Fréchet-Hoeffding bounds are not comparable. If we let C(u, v) =
M(u,v)+M(u,v)

2 , then C(14 ,
1
4) ≻

∏
(14 ,

1
4) and C(14 ,

3
4) ≺

∏
(14 ,

3
4), so that neither

C ≺
∏
) nor C ≻

∏
) holds.

2) However, there are families of copulas that are totally ordered. We will call a
totally ordered parametric family {Cθ} of copulas positively ordered if Cθ1 ≺ Cθ2

whenever θ1 ≤ θ2; and negatively ordered if Cθ1 ≻ Cθ2 whenever θ1 ≤ θ2.
Fome more example we can check the copulas: FGM(θ), Gumbel(θ), AMH(θ).

1.6 Random variate generation

One of the primary applications of copulas is in simulation and monte Carlo
studies. It is well known that, to obtain an observation x of a random variable
X with distribution F (x):
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• Generate a variate u that is uniform on (0, 1);

• Set x = F−1(u), where F (−1) is quasi-inverse of F .

There are a variety of procedures used to generate observations (x, y) of a pair
or random vector (X,Y ) with a joint distribution function H. In this section,
we will focus on using the copula as a tool. By virtue Sklar’s Theorem, we need
only generate a pair (u, v) of observations of uniform (0, 1) random variables
(U, V ) whose joint distribution function is C(u, v), the copula of X and Y , and
then transform those uniform variate via the algorithm such as the one in the
univariate case.One procedure for generating such of a pair (u, v) of uniform
(0, 1) variate is the conditional distribution method. For this method , we need
the conditional distribution function for V given U = u, which we denote:

Cu(v) = P [V ≤ v|U = u] =
∂C(u, v)

∂u
.

Since the function Cu(v), exist and is nondecreasing almost every where in v.

• Generate two independent uniform (0, 1) variate u and t.

• Set v = C−1
u (t), where C

(−1)
u is quasi-inverse of Cu(.).

• The desired pair is (u, v), so (x, y) = (F−1
1 (u), F−1

2 (v)), where F1 and F2

are margins distribution X and Y respectively.

Example 1.6.1. Let the copula of X and Y is C(u, v) = uv
u+v−uv , then

Cu(v) =
∂C(u, v)

∂u
=

(
uv

u+ v − uv

)2

and C−1
u (t) =

u
√
t

1− (1− u)
√
t
.

So, an algorithm to generate random variates (x, y) is:

• Generate two independent uniform (0, 1) variate u and t.

• Set u
√
t

1−(1−u)
√
t
.

• Set (x, y) = (F−1
1 (u), F−1

2 (v)), where F1 and F2 are margins distribution X and
Y respectively.
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Survival copulas can also be used in the conditional distribution function method
to generate random variates from a distribution with a given survival function. If
the copula C is the distribution function of a pair (U, V ), then the corresponding
survival copula
Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) is the distribution function of the pair
(1−U, 1− V ). Also note that if U is uniform in (0, 1), so is the random variable
1− U. Hence we have the following algorithm to generate a pair (U, V ) :

• Generate two independent uniform (0, 1) variate u and t.

• Set v = Ĉ−1
u (t), where Ĉ

(−1)
u is quasi-inverse of Ĉu(.).

• The desired pair is (u, v), so (x, y) = (F−1
1 (u), F−1

2 (v)), where F1 and F2

are margins distribution X and Y respectively.

1.7 Multivariate Copulas

For details see the following books:
Nelsen(2006), An Introduction to copula. Chapter 2, Section 2.10. page 42.
FABRIZIO DURANTE and ,Bozen-Bolzano (2016) PRINCIPLES of COPULA
THEORY , Chapter 1.
Exercises
Some problems for this chapter: Nelsen (2006). Chapter 2.
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