
Multivariate Linear Regression Models

• Regression analysis is used to predict the value of one or
more responses from a set of predictors.

• It can also be used to estimate the linear association between
the predictors and reponses.

• Predictors can be continuous or categorical or a mixture of
both.

• We first revisit the multiple linear regression model for one
dependent variable and then move on to the case where more
than one response is measured on each sample unit.
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Multiple Regression Analysis
• Let z1, z2, ..., zr be a set of r predictors believed to be related

to a response variable Y .

• The linear regression model for the jth sample unit has the
form

Yj = β0 + β1zj1 + β2zj2 + ...+ βrzjr + εj,

where ε is a random error and the βi, i = 0,1, ..., r are un-
known (and fixed) regression coefficients.

• β0 is the intercept and sometimes we write β0zj0, where
zj0 = 1 for all j.

• We assume that

E(εj) = 0, Var(εj) = σ2, Cov(εj, εk) = 0 ∀j 6= j.
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Multiple Regression Analysis

• With n independent observations, we can write one model for

each sample unit or we can organize everything into vectors

and matrices so that the model is now

Y = Zβ + ε

where Y is n×1, Z is n×(r+1), β is (r+1)×1 and ε is n×1.

• Cov(ε) = E(εε′) = σ2I is an n×n variance-covariance matrix

for the random errors and for Y.

• Then,

E(Y) = Zβ, Cov(Y) = σ2I.

So far we have made no other assumptions about the distri-

bution of ε or Y.
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Least Squares Estimation

• One approach to estimating the vector β is to choose
the value of β that minimizes the sum of squared residuals

(Y − Zβ)′(Y − Zβ)

• We use β̂ to denote the least squares estimate of β. The
formula is

β̂ = (Z′Z)−1Z′Y.

• Predicted values are Ŷ = Zβ̂ = HY where H = Z(Z′Z)−1Z′

is called the ’hat’ matrix.

• The matrix H is idempotent, meaning that H ′H = HH ′ = I.
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Residuals

• Residuals are computed as

ε̂ = Y − Ŷ = Y − Zβ̂ = Y − Z(Z′Z)−1Z′Y = (I −H)Y.

• The residual sums of squares (or error sums of squares) is

ε̂′ε̂ = Y′(I −H)′(I −H)Y = Y′(I −H)Y
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Sums of squares
• We can partition variability in y into variability due to changes

in predictors and variability due to random noise (effects
other than the predictors). The sum of squares decomposi-
tion is:

n∑
j=1

(yj − ȳ)2

︸ ︷︷ ︸
Total SS

=
∑
j

(ŷ − ȳ)2

︸ ︷︷ ︸
SSReg.

+
∑
j

ε̂2

︸ ︷︷ ︸
SSError

.

• The coefficient of multiple determination is

R2 =
SSR

SST
= 1−

SSE

SST
.

• R2 indicates the proportion of the variability in the observed
responses that can be attributed to changes in the predictor
variables.
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Properties of Estimators and Residuals

• Under the general regression model described earlier and for

β̂ = (Z′Z)−1Z′Y we have:

E(β̂) = β, Cov(β̂) = σ2(Z′Z)−1.

• For residuals:

E(ε̂) = 0, Cov(ε̂) = σ2(I −H), E(ε̂′ε̂) = (n− r − 1)σ2.

• An unbiased estimate of σ2 is

s2 =
ε̂′ε̂

n− (r + 1)
=

Y′(I −H)Y

n− r − 1
=

SSE

n− r − 1
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Properties of Estimators and Residuals

• If we assume that the n × 1 vector ε ∼ Nn(0, σ2I), then it

follows that

Y ∼ Nn(Zβ, σ2I)

β̂ ∼ Nr+1(β, σ2(Z′Z)−1).

• β̂ is distributed independent of ε̂ and furthermore

ε̂ = (I −H)y ∼ N(0, σ2(I −H))

(n− r − 1)s2 = ε̂′ε̂ ∼ σ2χ2
n−r−1.
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Confidence Intervals

• Estimating Cov(β) as Ĉov(β̂) = s2(Z′Z)−1, a 100(1 − α)%

confidence region for β is the set of values of β that satisfy:

1

s2
(β − β̂)′Z′Z(β − β̂) ≤ (r + 1)Fr+1,n−r−1(α),

where r + 1 is the rank of Z.

• Simultaneous confidence intervals for any number of linear

combinations of the regression coefficients are obtained as:

c′β̂ ±
√

(r + 1)Fr+1,n−r−1(α)
√
s2c′(Z′Z)−1c,

These are known as Scheffe’ confidence intervals.
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Inferences about the regression function at z0

• When z = z0 = [1, z01, ..., z0r]
′ the response has conditional

mean E(Y0|z0) = z′0β

• An unbiased estimate is Ŷ0 = z′0β̂ with variance z′0(Z′Z)−1z0σ
2.

• We might be interested in a confidence interval for the mean

response at z = z0 or in a prediction interval for a new ob-

servation Y0 at z = z0.
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Inferences about the regression function

• A 100(1 − α)% confidence interval for E(Y0|z0) = z′0β, the

expected response at z = z0, is given by

z′0β̂ ± tn−r−1(α/2)
√
z′0(Z′Z)−1z0s

2.

• A 100(1− α)% confidence region for E(Y0|z0) = z′0β, for all

z0 in some region is obtained form the Scheffe’ method as

z′0β̂ ±
√

(r + 1)Fr+1,n−r−1(α)
√
z′0(Z′Z)−1z0s

2.
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Inferences about the regression function at z0

• If we wish to predict the value of a future observation Y0, we

need the variance of the prediction error Y0 − z′0β̂:

Var(Y0 − z′0β̂) = σ2 + σ2z′0(Z′Z)−1z0 = σ2(1 + z′0(Z′Z)−1z0).

Note that the uncertainty is higher when predicting a future

observation than when predicting the mean response at

z = z0.

• Then, a 100(1− α)% prediction interval for a future

observation at z = z0 is given by

z′0β̂ ± tn−r−1(α/2)
√

(1 + z′0(Z′Z)−1z0)s2.
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Multivariate Multiple Regression
• We now extend the regression model to the situation where

we have measured m responses Y1, Y2, ..., Yp and the same set
of r predictors z1, z2, ..., zr on each sample unit.

• Each response follows its own regression model:

Y1 = β01 + β11z1 + ...+ βr1zr + ε1
Y2 = β02 + β12z1 + ...+ βr2zr + ε2

... ...

Yp = β0p + β1pz1 + ...+ βrpzr + εp

• ε = (ε1, ε2, . . . , εp)
′ has expectation 0 and variance matrix

Σp×p. The errors associated with different responses on the
same sample unit may have different variances and may be
correlated.
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Multivariate Multiple Regression
• Suppose we have a sample of size n. As before, the design

matrix Z has dimension n× (r + 1). But now:

Yn×m =


Y11 Y12 · · · Y1p
Y21 Y22 · · · Y2p

... ... ......
Yn1 Yn2 · · · Ynp

 =
[

Y(1) Y(2) · · · Y(p)

]
,

where Y(i) is the vector of n measurements of the ith variable.
Also,

β(r+1)×m =


β01 β02 · · · β0m
β11 β12 · · · β1m

... ... ... ...
βr1 βr2 · · · βrm

 =
[
β(1) β(2) · · · β(m)

]
,

where β(i) are the (r+1) regression coefficients in the model
for the ith variable.
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Multivariate Multiple Regression

• Finally, the p n−dimensional vectors of errors ε(i), i = 1, ..., p

are also arranged in an n× p matrix

ε =


ε11 ε12 · · · ε1p
ε21 ε22 · · · ε2p

... ... · · · ...
εn1 εn2 · · · εnp

 =
[
ε(1) ε(2) · · · ε(p)

]
=


ε′1
ε′2...
ε′n

 ,
where the p−dimensional row vector ε′j includes the residuals

for each of the p response variables for the j-th subject or

unit.
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Multivariate Multiple Regression
• We can now formulate the multivariate multiple regression

model:

Yn×p = Zn×(r+1)β(r+1)×p + εn×p,

E(ε(i)) = 0, Cov(ε(i), ε(k)) = σikI, i, k = 1,2, ..., p.

• The m measurements on the jth sample unit have covariance
matrix Σ but the n sample units are assumed to respond
independently.

• Unknown parameters in the model are β(r+1)×p and the
elements of Σ.

• The design matrix Z has jth row
[
zj0 zj1 · · · zjr

]
, where

typically zj0 = 1.
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Multivariate Multiple Regression

• We estimate the regression coefficients associated with the

ith response using only the measurements taken from the n

sample units for the ith variable. Using Least Squares and

with Z of full column rank:

β̂(i) = (Z′Z)−1Z′Y(i).

• Collecting all univariate estimates into a matrix:

β̂ =
[

β̂(1) β̂(2) · · · β̂(p)

]
= (Z′Z)−1Z′

[
Y(1) Y(2) · · · Y(p)

]
,

or equivalently β̂(r+1)×p = (Z′Z)−1Z′Y .
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Least Squares Estimation

• The least squares estimator for β minimizes the sums of
squares elements on the diagonal of the residual sum of
squares and crossproducts matrix (Y − Zβ̂)′(Y − Zβ̂) =

(Y(1) − Zβ̂(1))′(Y(1) − Zβ̂(1)) · · · (Y(1) − Zβ̂(1))′(Y(p) − Zβ̂(p))

(Y(2) − Zβ̂(2))′(Y(1) − Zβ̂(1)) · · · (Y(2) − Zβ̂(2))′(Y(p) − Zβ̂(p))
... · · · ...

(Y(p) − Zβ̂(p))′(Y(1) − Zβ̂(1)) · · · (Y(p) − Zβ̂(p))′(Y(p) − Zβ̂(p))

 ,

Consequently the matrix (Y − Zβ̂)′(Y − Zβ̂) has smallest
possible trace.

• The generalized variance |(Y −Zβ̂)′(Y −Zβ̂)| is also minimized
by the least squares estimator
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Least Squares Estimation

• Using the least squares estimator for β we can obtain
predicted values and compute residuals:

Ŷ = Zβ̂ = Z(Z′Z)−1Z′Y
ε̂ = Y − Ŷ = Y − Z(Z′Z)−1Z′Y = [I − Z(Z′Z)−1Z′]Y.

• The usual decomposition into sums of squares and cross-
products can be shown to be:

Y ′Y︸ ︷︷ ︸
TotSSCP

= Ŷ ′Ŷ︸ ︷︷ ︸
RegSSCP

+ ε̂′ε̂︸︷︷︸
ErrorSSCP

,

and the error sums of squares and cross-products can be
written as

ε̂′ε̂ = Y ′Y − Ŷ ′Ŷ = Y ′[I − Z(Z′Z)−1Z′]Y
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Propeties of Estimators

• For the multivariate regression model and with Z of full rank
r + 1 < n:

E(β̂) = β, Cov(β̂(i), β̂(k)) = σik(Z′Z)−1, i, k = 1, ..., p.

• Estimated residuals ε̂(i) satisfy E(ε̂(i)) = 0 and

E(ε̂′(i)ε̂(k)) = (n− r − 1)σik,

and therefore

E(ε̂) = 0, E(ε̂′ε̂) = (n− r − 1)Σ.

• β̂ and the residuals ε̂ are uncorrelated.
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Prediction

• For a given set of predictors z′0 =
[

1 z01 · · · z0r

]
we can

simultaneously estimate the mean responses z′0β for all p
response variables as z′0β̂.

• The least squares estimator for the mean responses is
unbiased: E(z′0β̂) = z′0β.

• The estimation errors z′0β̂(i) − z′0β(i) and z′0β̂(k) − z′0β(k) for
the ith and kth response variables have covariances

E[z′0(β̂(i) − β(i))(β̂(k) − β(k))′z0] = z′0[E(β̂(i) − β(i))(β̂(k) − β(k))′]z0

= σikz
′
0(Z′Z)−1z0.
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Prediction

• A single observation at z = z0 can also be estimated un-

biasedly by z′0β̂ but the forecast errors (Y0i − z′0β̂(i)) and

(Y0k − z′0β̂(k)) may be correlated

E(Y0i − z′0β̂(i))(Y0k − z′0β̂(k))

= E(ε(0i) − z
′
0(β̂(i) − β(i)))(ε(0k) − z

′
0(β̂(k) − β(k)))

= E(ε(0i)ε(0k)) + z′0E(β̂(i) − β(i))(β̂(k) − β(k))z0

= σik(1 + z′0(Z′Z)−1z0).
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Likelihood Ratio Tests

• If in the multivariate regression model we assume that
ε ∼ Np(0,Σ) and if rank(Z) = r + 1 and n ≥ (r + 1) + p,
then the least squares estimator is the MLE of β and has a
normal distribution with

E(β̂) = β, Cov(β̂(i), β̂(k)) = σik(Z′Z)−1.

• The MLE of Σ is

Σ̂ =
1

n
ε̂′ε̂ =

1

n
(Y − Zβ̂)′(Y − Zβ̂).

• The sampling distribution of nΣ̂ is Wp,n−r−1(Σ).
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Likelihood Ratio Tests

• Computations to obtain the least squares estimator (MLE)

of the regression coefficients in the multivariate multiple re-

gression model are no more difficult than for the univariate

multiple regression model, since the β̂(i) are obtained one at

a time.

• The same set of predictors must be used for all p response

variables.

• Goodness of fit of the model and model diagnostics are

usually carried out for one regression model at a time.
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Likelihood Ratio Tests

• As in the case of the univariate model, we can construct a

likelihood ratio test to decide whether a set of r−q predictors

zq+1, zq+2, ..., zr is associated with the m responses.

• The appropriate hypothesis is

H0 : β(2) = 0, where β =

[
β(1),(q+1)×p
β(2),(r−q)×p

]
.

• If we set Z =
[
Z(1),n×(q+1) Z(2),n×(r−q)

]
, then

E(Y ) = Z(1)β(1) + Z(2)β(2).
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Likelihood Ratio Tests

• Under H0, Y = Z(1)β(1)+ε. The likelihood ratio test consists

in rejecting H0 if Λ is small where

Λ =
maxβ(1),Σ

L(β(1),Σ)

maxβ,ΣL(β,Σ)
=
L(β̂(1), Σ̂1)

L(β̂, Σ̂)
=

(
|Σ̂|
|Σ̂1|

)n/2

• Equivalently, we reject H0 for large values of

−2 ln Λ = −n ln

(
|Σ̂|
|Σ̂1|

)
= −n ln

|nΣ̂|
|nΣ̂ + n(Σ̂1 − Σ̂)|

.
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Likelihood Ratio Tests

• For large n:

−[n−r−1−
1

2
(p−r+q+1)] ln

(
|Σ̂|
|Σ̂1|

)
∼ χ2

p(r−q), approximately.

• As always, the degrees of freedom are equal to the difference

in the number of “free” parameters under H0 and under H1.
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Other Tests

• Most software (R/SAS) report values on test statistics such
as:

1. Wilk’s Lambda: Λ∗ = |Σ̂|
|Σ̂0|

2. Pillai’s trace criterion: trace[(Σ̂− Σ̂0)Σ̂−1]

3. Lawley-Hotelling’s trace: trace[(Σ̂− Σ̂0)Σ̂−1]

4. Roy’s Maximum Root test: largest eigenvalue of Σ̂0Σ̂−1

• Note that Wilks’ Lambda is directly related to the Likelihood
Ratio test. Also, Λ∗ =

∏p
i=1(1 + li), where li are the roots of

|Σ̂0 − l(Σ̂− Σ̂0)| = 0.
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Distribution of Wilks’ Lambda

• Let nd be the degrees of freedom of Σ̂, i.e. nd = n− r − 1.

• Let j = r − q + 1, r = pj
2 − 1, and s =

√
p2j2−4
p2+j2−5

, and k =

nd − 1
2(p− j + 1).

• Then

1− Λ∗1/s

Λ∗1/s
ks− r
pj

∼ Fpj,ks−r

• The distribution is exact for p = 1 or p = 2 or for m = 1 or
p = 2. In other cases, it is approximate.
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Likelihood Ratio Tests

• Note that

(Y −Z(1)β̂(1))′(Y −Z(1)β̂(1))−(Y −Zβ̂)′(Y −Zβ̂) = n(Σ̂1−Σ̂),

and therefore, the likelihood ratio test is also a test of extra

sums of squares and cross-products.

• If Σ̂1 ≈ Σ̂, then the extra predictors do not contribute to

reducing the size of the error sums of squares and crossprod-

ucts, this translates into a small value for −2 ln Λ and we fail

to reject H0.
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Example-Exercise 7.25

• Amitriptyline is an antidepressant suspected to have serious

side effects.

• Data on Y1 = total TCAD plasma level and Y2 = amount

of the drug present in total plasma level were measured on

17 patients who overdosed on the drug. [We divided both

responses by 1000.]

• Potential predictors are:

z1 = gender (1 = female, 0 = male)

z2 = amount of antidepressant taken at time of overdose

z3 = PR wave measurements

z4 = diastolic blood pressure

z5 = QRS wave measurement.
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Example-Exercise 7.25

• We first fit a full multivariate regression model, with all five

predictors. We then fit a reduced model, with only z1, z2,

and performed a Likelihood ratio test to decide if z3, z4, z5

contribute information about the two response variables that

is not provided by z1 and z2.

• From the output:

Σ̂ =
1

17

[
0.87 0.7657

0.7657 0.9407

]
, Σ̂1 =

1

17

[
1.8004 1.5462
1.5462 1.6207

]
.
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Example-Exercise 7.25

• We wish to test H0 : β3 = β4 = β5 = 0 against H1 : at least

one of them is not zero, using a likelihood ratio test with

α = 0.05.

• The two determinants are |Σ̂| = 0.0008 and |Σ̂1| = 0.0018.

Then, for n = 17, p = 2, r = 5, q = 2 we have:

−(n− r − 1−
1

2
(p− r + q + 1)) ln

(
|Σ̂|
|Σ̂1|

)
=

−(17− 5− 1−
1

2
(2− 5 + 2 + 1)) ln

(
0.0008

0.0018

)
= 8.92.
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Example-Exercise 7.25

• The critical value is χ2
2(5−2)(0.05) = 12.59. Since 8.92 <

12.59 we fail to reject H0. The three last predictors do not

provide much information about changes in the means for the

two response variables beyond what gender and dose provide.

• Note that we have used the MLE’s of Σ under the two hy-

potheses, meaning, we use n as the divisor for the matrix of

sums of squares and cross-products of the errors. We do not

use the usual unbiased estimator, obtained by dividing the

matrix E (or W ) by n− r − 1, the error degrees of freedom.

• What we have not done but should: Before relying on

the results of these analyses, we should carefully inspect the

residuals and carry out the usual tests.
554



Prediction

• If the model Y = Zβ + ε was fit to the data and found to be
adequate, we can use it for prediction.

• Suppose we wish to predict the mean response at some value
z0 of the predictors. We know that

z′0β̂ ∼ Np(z
′
0β, z

′
0(Z′Z)−1z0Σ).

• We can then compute a Hotelling T2 statistic as

T2 =

 z′0β̂ − z
′
0β√

z′0(Z′Z)−1z0


′ (

n

n− r − 1
Σ̂
)−1

 z′0β̂ − z
′
0β√

z′0(Z′Z)−1z0

 .
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Confidence Ellipsoids and Intervals

• Then, a 100(1 − α)% CR for x′0β is given by all z′0β that
satisfy

(z′0β̂ − z
′
0β)′

(
n

n− r − 1
Σ̂
)−1

(z′0β̂ − z
′
0β)

≤ z′0(Z′Z)−1z0

[(
p(n− r − 1)

n− r − p

)
Fp,n−r−p(α)

]
.

• The simultaneous 100(1 − α)% confidence intervals for the
means of each response E(Yi) = z′0β(i), i=1,2,...,p, are

z′0β̂(i)±

√√√√(p(n− r − 1)

n− r − p

)
Fp,n−r−p(α)

√
z′0(Z′Z)−1z0

(
n

n− r − 1
σ̂ii

)
.
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Confidence Ellipsoids and Intervals
• We might also be interested in predicting (forecasting) a sin-

gle p−dimensional response at z = z0 or Y0 = z′0β + ε0.

• The point predictor of Y0 is still z′0β̂.

• The forecast error

Y0−z′0β̂ = (β−z′0β̂)+ε0 is distributed as Np(0, (1+z′0(Z′Z)−1z0)Σ).

• The 100(1−α)% prediction ellipsoid consists of all values of
Y0 such that

(Y0 − z′0β̂)′
(

n

n− r − 1
Σ̂
)−1

(Y0 − z′0β̂)

≤ (1 + z′0(Z′Z)−1z0)

[(
p(n− r − 1)

n− r − p

)
Fp,n−r−p(α)

]
.
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Confidence Ellipsoids and Intervals

• The simultaneous prediction intervals for the p response vari-

ables are

z′0β̂(i)±

√√√√(p(n− r − 1)

n− r − p

)
Fp,n−r−p(α)

√
(1 + z′0(Z′Z)−1z0)

(
n

n− r − 1
σ̂ii

)
,

where β̂(i) is the ith column of β̂ (estimated regression coef-

ficients corresponding to the ith variable), and σ̂ii is the ith

diagonal element of Σ̂.
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Example - Exercise 7.25 (cont’d)

• We consider the reduced model with r = 2 predictors for
p = 2 responses we fitted earlier.

• We are interested in the 95% confidence ellipsoid for E(Y01, Y02)
for women (z01 = 1) who have taken an overdose of the drug
equal to 1,000 units (z02 = 1000).

• From our previous results we know that:

β̂ =

 0.0567 −0.2413
0.5071 0.6063

0.00033 0.00032

 , Σ̂ =

[
0.1059 0.0910
0.0910 0.0953

]
.

• SAS IML code to compute the various pieces of the CR is
given next.
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Example - Exercise 7.25 (cont’d)

proc iml ; reset noprint ;

n = 17 ; p = 2 ; r = 2 ;

tmp = j(n,1,1) ;

use one ;

read all var{z1 z2} into ztemp ;

close one ;

Z = tmp||ztemp ;

z0 = {1, 1, 1000} ;

ZpZinv = inv(Z‘*Z) ; z0ZpZz0 = z0‘*ZpZinv*z0 ;
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Example - Exercise 7.25 (cont’d)

betahat = {0.0567 -0.2413, 0.5071 0.6063, 0.00033 0.00032} ;

sigmahat = {0.1059 0.0910, 0.0910 0.0953};

betahatz0 = betahat‘*z0 ;

scale = n / (n-r-1) ;

varinv = inv(sigmahat)/scale ;

print z0ZpZz0 ;

print betahatz0 ;

print varinv ;

quit ;
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Example - Exercise 7.25 (cont’d)

• From the output, we get: z′0(Z′Z)−1z0 = 0.100645,

z′0β̂ =

[
0.8938
0.685

]
,

(
n

n− r − 1
Σ̂
)−1

=

[
43.33 −41.37
−41.37 48.15

]
.

• Further, p(n− r − 1)/(n− r − p) = 2.1538 and F2,13(0.05) =
3.81.

• Therefore, the 95% confidence ellipsoid for z′0β is given by
all values of z′0β that satisfy

(z′0β −
[

0.8938
0.685

]
)′

[
43.33 −41.37
−41.37 48.15

]
(z′0β −

[
0.8938
0.685

]
)

≤ 0.100645(2.1538× 3.81).
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Example - Exercise 7.25 (cont’d)

• The simultaneous confidence intervals for each of the ex-
pected responses are given by:

0.8938 ±
√

2.1538× 3.81
√

0.100645× (17/14)× 0.1059

= 0.8938± 0.3259

0.685 ±
√

2.1538× 3.81
√

0.100645× (17/14)× 0.0953

= 0.685± 0.309,

for E(Y01) and E(Y02), respectively.

• Note: If we had been using sii (computed as the i, ith element
of E over n− r − 1) instead of σ̂ii as an estimator of σii, we
would not be multiplying by 17 and dividing by 14 in the
expression above.
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Example - Exercise 7.25 (cont’d)

• If we wish to construct simultaneous confidence intervals
for a single response at z = z0 we just have to use (1 +
z′0(Z′Z)−1z0) instead of z′0(Z′Z)−1z0. From the output, (1 +
z′0(Z′Z)−1z0) = 1.100645 so that the 95% simultaneous con-
fidence intervals for forecasts (Y01, Y02 are given by

0.8938 ±
√

2.1538× 3.81
√

1.100645× (17/14)× 0.1059

= 0.8938± 1.078

0.685 ±
√

2.1538× 3.81
√

1.100645× (17/14)× 0.0953

= 0.685± 1.022.

• As anticipated, the confidence intervals for single forecasts
are wider than those for the mean responses at a same set
of values for the predictors.
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Example - Exercise 7.25 (cont’d)

ami$gender <- as.factor(ami$gender)

library(car)

fit.lm <- lm(cbind(TCAD, drug) ~ gender + antidepressant + PR + dBP

+ QRS, data = ami)

fit.manova <- Manova(fit.lm)

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

gender 1 0.65521 9.5015 2 10 0.004873 **

antidepressant 1 0.69097 11.1795 2 10 0.002819 **

PR 1 0.34649 2.6509 2 10 0.119200

dBP 1 0.32381 2.3944 2 10 0.141361

QRS 1 0.29184 2.0606 2 10 0.178092

---
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Example - Exercise 7.25 (cont’d)

C <- matrix(c(0, 0, 0, 0 , 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1), nrow = 3)

newfit <- linearHypothesis(model = fit.lm, hypothesis.matrix = C)

Sum of squares and products for the hypothesis:

TCAD drug

TCAD 0.9303481 0.7805177

drug 0.7805177 0.6799484

Sum of squares and products for error:

TCAD drug

TCAD 0.8700083 0.7656765

drug 0.7656765 0.9407089
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Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 3 0.6038599 1.585910 6 22 0.19830

Wilks 3 0.4405021 1.688991 6 20 0.17553

Hotelling-Lawley 3 1.1694286 1.754143 6 18 0.16574

Roy 3 1.0758181 3.944666 3 11 0.03906 *

---



Dropping predictors

fit1.lm <- update(fit.lm, .~ . - PR - dBP - QRS)

Coefficients:

TCAD drug

(Intercept) 0.0567201 -0.2413479

gender1 0.5070731 0.6063097

antidepressant 0.0003290 0.0003243

fit1.manova <- Manova(fit1.lm)

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

gender 1 0.45366 5.3974 2 13 0.01966 *

antidepressant 1 0.77420 22.2866 2 13 6.298e-05 ***
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Predict at a new covariate

new <- data.frame(gender = levels(ami$gender)[2], antidepressant = 1)

predict(fit1.lm, newdata = new)

TCAD drug

1 0.5641221 0.365286

fit2.lm <- update(fit.lm, .~ . - PR - dBP - QRS + gender:antidepressant)

fit2.manova <- Manova(fit2.lm)

predict(fit2.lm, newdata = new)
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Drop predictors, add interaction term

fit2.lm <- update(fit.lm, .~ . - PR - dBP - QRS + gender:antidepressant)

fit2.manova <- Manova(fit2.lm)

predict(fit2.lm, newdata = new)

TCAD drug

1 0.4501314 0.2600822
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anova.mlm(fit.lm, fit1.lm, test = "Wilks")

Analysis of Variance Table

Model 1: cbind(TCAD, drug) ~ gender + antidepressant + PR + dBP + QRS

Model 2: cbind(TCAD, drug) ~ gender + antidepressant

Res.Df Df Gen.var. Wilks approx F num Df den Df Pr(>F)

1 11 0.043803

2 14 3 0.051856 0.4405 1.689 6 20 0.1755

anova(fit2.lm, fit1.lm, test = "Wilks")

Analysis of Variance Table

Model 1: cbind(TCAD, drug) ~ gender + antidepressant + gender:antidepressant

Model 2: cbind(TCAD, drug) ~ gender + antidepressant



Res.Df Df Gen.var. Wilks approx F num Df den Df Pr(>F)

1 13 0.034850

2 14 1 0.051856 0.38945 9.4065 2 12 0.003489 **

---


